Abstract

The objectives of the present study were to achieve 1) oocyte maturation, 2) oocyte competence of fertilization, and 3) oocyte competence of embryogenesis with oocytes from primordial follicles obtained from cryopreserved newborn mouse ovaries by using a two-step method. In the first step, frozen-thawed newborn mouse ovaries were transplanted under the kidney capsule of recipients for the initiation of growth from the primordial follicle stage on. In the second step, growing preantral follicles in the ovarian grafts were recovered and cultured. The results demonstrated that primordial follicles were able to be recruited to preantral follicles during the period of transplantation, and preantral follicles could be mechanically isolated from ovarian grafts. Under the present in vitro culture conditions, 85.8% of the isolated follicles (n = 332) from ovarian grafts survived the 12-day in vitro culture process, 84.9% of the recovered oocytes (n = 285) were germinal vesicle breakdown (GVBD)-competent, and 76% of the oocytes that underwent GVBD (n = 242) developed to the metaphase II (MII) stage. In the in vitro fertilization experiments, 75.4% of 142 inseminated MII oocytes underwent fertilization and cleavage to the 2-cell stage. Subsequently, 79.7% of the 2-cell-stage embryos (n = 69) progressed to the late morula-early blastocyst stage. Transfer of late morula-early blastocyst embryos resulted in the production of live offspring. From our experiments, it may be concluded that in vivo maturation by grafting followed by in vitro maturation of frozen-thawed primordial follicles can restore fertility in mice. This model could be useful for a similar application in the human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.