Abstract

In favorable conditions, Daphnia magna undergoes parthenogenesis to increase progeny production in a short time. However, in unfavorable conditions, Daphnia undergoes sexual reproduction instead and produces resting eggs. Here, we report live observations of the oviposition process in Daphnia magna. We observed that the cellular contents flowed irregularly through the narrow egg canal during oviposition. Amorphous ovarian eggs developed an oval shape immediately after oviposition and, eventually, a round shape. Oviposition of resting eggs occurred in a similar way. Based on the observations, we propose that, unlike Drosophila eggs, Daphnia eggs cannot maintain cytoplasmic integrity during oviposition. We also determined that the parthenogenetic eggs were activated within 20 min, as demonstrated by vitelline envelope formation. Therefore, it is plausible that the eggs of Daphnia magna may be activated by squeezing pressure during oviposition.

Highlights

  • Crustaceans of the genus Daphnia are used as model organisms in the fields of toxicology, ecology, and evolutionary biology [1]

  • The results showed that the contents of the resting eggs passed through a narrow egg canal and accumulated outside the ovary, as observed for parthenogenetic eggs (Fig 3A, Fig 3B, S3 Movie and S4 Movie)

  • Our results revealed that vitelline envelope (VE) formation took some time in the parthenogenetic eggs of Daphnia magna

Read more

Summary

Introduction

Crustaceans of the genus Daphnia are used as model organisms in the fields of toxicology, ecology, and evolutionary biology [1]. Daphnia species exhibit an alternative reproductive mode. They usually undergo parthenogenesis to generate diploid female offspring without a fertilization event [2]. Parthenogenesis is maintained when surrounding conditions are favorable. When Daphnia are exposed to unfavorable conditions, male offspring are parthenogenetically produced, and sexual reproduction proceeds [2,3,4]. Various environmental factors can affect this process, such as temperature, photoperiod, food availability, and population density [2, 3, 5]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.