Abstract
Plant soil feedbacks (PSFs) are thought to be important to plant growth and species coexistence, but most support for these hypotheses is derived from short-term greenhouse experiments. Here we use a seven-year, common garden experiment to measure PSFs for seven native and six nonnative species common to the western United States. We use these long-term, field-based estimates to test correlations between PSF and plant landscape abundance, species origin, functional type, and lifespan. To assess potential PSF mechanisms, we also measured soil microbial community composition, root biomass, nitrogen cycling, bulk density, penetration resistance, and shear strength. Plant abundance on the landscape and plant lifespan were positively correlated with PSFs, though this effect was due to the relationships for native plants. PSFs were correlated with indices of soil microbial community composition. Soil nutrient and physical traits and root biomass differed among species but were not correlated with PSF. While results must be taken with caution because only 13 species were examined, these species represent most of the dominant plant species in the system. Results suggest that native plant abundance is associated with the ability of long-lived plants to create positive plant-soil microbe interactions, while short-lived nonnative plants maintain dominance by avoiding soil-borne antagonists, increasing nitrogen cycling and dedicating resources to aboveground growth and reproduction rather than to belowground growth. Broadly, results suggest that PSFs are correlated with a suite of traits that determine plant abundance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.