Abstract

Listeria monocytogenes is a foodborne bacterial pathogen that causes human listeriosis, a severe systemic infection.1 Its translocation across the intestinal epithelium is mediated by the interaction of internalin (InlA), a Listeria surface protein, with its host-species-specific receptor E-cadherin (Ecad).2-5 It occurs through goblet cells, on which Ecad is luminally accessible,6 via an unknown mechanism. In the absence of cell lines recapitulating this phenotype invitro, we developed an exvivo experimental system, based on the intraluminal microinjection of Listeria in untreated, pharmacologically treated, and genetically modified intestinal organoids. Using both live light-sheet microscopy and confocal imaging, we show that Listeria translocates through goblet cells within a membrane vacuole in an InlA- and microtubule-dependent manner. As Ecad undergoes constant apical-basal recycling,7,8 we hypothesized that Lm may transit through goblet cells by hijacking Ecad recycling pathway. Indeed, Listeria is stuck at goblet cell apex when Ecad endocytosis is blocked and remains trapped intracellularly at the basolateral pole of goblet cells when Rab11-dependent Ecad recycling is compromised. Together, these results show that Listeria, upon docking onto its luminally accessible receptor Ecad, hijacks its recycling pathway to be transferred by transcytosis across goblet cells. Live imaging of host-pathogen interactions in organoids is a promising approach to dissect their underlying cell and molecular biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call