Abstract

Cell motility is required for diverse processes during immunity and inflammation. Classically, leukocyte motility is defined as an amoeboid type of migration, however some leukocytes, like macrophages, also employ a more mesenchymal mode of migration. Here, we sought to characterize the mechanisms that regulate neutrophil and macrophage migration in vivo by using real-time imaging of leukocyte motility within interstitial tissues in zebrafish larvae. Neutrophils displayed a rounded morphology and rapid protease-independent motility, lacked defined paxillin puncta, and had persistent rearward polarization of stable F-actin and the microtubule network. By contrast, macrophages displayed an elongated morphology with reduced speed and increased directional persistence and formed paxillin-containing puncta but had a less-defined polarization of the microtubule and actin networks. We also observed differential effects of protease inhibition, microtubule disruption and ROCK inhibition on the efficiency of neutrophil and macrophage motility. Taken together, our findings suggest that larval zebrafish neutrophils and macrophage display distinct modes of migration within interstitial tissues in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.