Abstract

Planarian regeneration involves a complex series of cellular events, precisely choreographed in space and time. Time-lapse imaging can provide powerful insights into tissue dynamics, as variously demonstrated in other model systems. However, time-lapse imaging of planarians has proven to be a challenge. Especially the requisite immobilization of the animals over extended periods of time is difficult, owing to their photophobic behavior and soft body architecture. Here, we describe a new embedding method using 2% (w/v) low melting agarose, and demonstrate that this method can effectively immobilize animals as long as 7days. In combination with cell-permeable fluorescent dyes, this immobilization method allows for the time-lapse imaging of planaria during regeneration and other physiological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.