Abstract

Multiplex RNA detection with fluorescence microscopy offers high spatial and temporal resolution required for addressing complex behaviors of RNA in living cells. Using chemically engineered linear oligonucleotide probes that emit fluorescence upon hybridization to target RNA, we have devised an imaging method suitable for studies of the dynamic regulation of nuclear RNPs, an important and yet poorly understood cellular pathway of gene expression. This new method labels specific sequences of RNA components in RNPs and thus avoids overexpression of fluorescent marker proteins that may result in entangled experimental results. Using this method, we observe in living brain tissue spatially constrained nuclear RNA foci under dynamic regulation in response to cellular transcriptional activity with individual cell heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.