Abstract

Live-imaging of axonal cargoes within central nervous system has been a long-lasting interest for neurobiologists as axonal transport plays critical roles in neuronal growth, function, and survival. Many kinds of cargoes are transported within axons, including synaptic vesicles and a variety of membrane-bound and membrane-less organelles. Imaging these cargoes at high spatial and temporal resolution, and within living brains, is technically very challenging. Here, we describe a quantitative method, based on customized mounting chambers, allowing live-imaging of axonal cargoes transported within the maturing brain of the fruit fly, Drosophila melanogaster. With this method, we could visualize in real time, using confocal microscopy, cargoes transported along axons. Our protocol is simple and easy to set up, as brains are mounted in our imaging chambers and ready to be imaged in about 1h. Another advantage of our method is that it can be combined with pharmacological treatments or super-resolution microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.