Abstract

How astrocytes grow and integrate into neural circuits remains poorly defined. Zebrafish are well-suited for such investigations, but bona fide astrocytes have not been described in this system. Here, we characterize a zebrafish cell type that is remarkably similar to mammalian astrocytes that derive from radial glial cells and elaborate processes to establish their territories at early larval stages. Zebrafish astrocytes associate closely with synapses, tile with one another, and express markers including Glast and glutamine synthetase. Once integrated into circuits, they exhibit whole-cell and microdomain Ca2+ transients, which are sensitive to norepinephrine. Finally, using a cell-specific CRISPR/Cas9 approach we demonstrate that fgfr3/4 are required for vertebrate astrocyte morphogenesis. This work provides the first visualization of astrocyte morphogenesis from stem cell to post-mitotic astrocyte in vivo, identifies a role for Fgf receptors in vertebrate astrocytes, and establishes zebrafish as a valuable new model system to study astrocyte biology in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.