Abstract

In flowering plants, the growth and guidance of the pollen tube (male gametophyte) within the pistil and the reception of the pollen tube by the female gametophyte are essential for double fertilization and subsequent seed development. The interactions between male and female gametophytes during pollen tube reception culminate in pollen tube rupture and the release of two sperm cells to effect double fertilization. As pollen tube growth and double fertilization are deeply hidden within the tissues of the flower, this process is difficult to observe in vivo. A semi-in vitro (SIV) method for the live-cell imaging of fertilization in the model plant Arabidopsis thaliana has been developed and implemented in several investigations. These studies have helped to elucidate the fundamental features of how the fertilization process occurs in flowering plants and which cellular and molecular changes occur during the interaction of the male and female gametophytes. However, because these live cell imaging experiments involve the excision of individual ovules, they are limited to a low number of observations per imaging session, making this approach tedious and very time-consuming. Among other technical difficulties, a failure of the pollen tubes to fertilize the ovules in vitro isoften reported, which severely confounds such analyses. Here, a detailed video protocol for the imaging of pollen tube reception and fertilization in an automated and high-throughput manner is provided, allowing for up to 40 observations of pollen tube reception and rupture per imaging session. Coupled with the use of genetically encoded biosensors and marker lines, this method enables the generation of large sample sizes with a reduced time investment. Nuances and critical points of the technique, including flower staging, dissection, medium preparation, and imaging, are clearly detailed in video format to facilitate future research on the dynamics of pollen tube guidance, reception, and double fertilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.