Abstract

Type 2 diabetes mellitus (T2DM) is a global health crisis which is characterized by insulin signaling impairment and chronic inflammation in peripheral tissues. The hypothalamus in the central nervous system (CNS) is the control center for energy and insulin signal response regulation. Chronic inflammation in peripheral tissues and imbalances of certain chemokines (such as CCL5, TNFα, and IL-6) contribute to diabetes and obesity. However, the functional mechanism(s) connecting chemokines and hypothalamic insulin signal regulation still remain unclear. In vitro primary neuron culture models are convenient and simple models which can be used to investigate insulin signal regulation in hypothalamic neurons. In this study, we introduced exogeneous GLUT4 protein conjugated with GFP (GFP-GLUT4) into primary hypothalamic neurons to track GLUT4 membrane translocation upon insulin stimulation. Time-lapse images of GFP-GLUT4 protein trafficking were recorded by deconvolution microscopy, which allowed users to generate high-speed, high-resolution images without damaging the neurons significantly while conducting the experiment. The contribution of CCR5 in insulin regulated GLUT4 translocation was observed in CCR5 deficient hypothalamic neurons, which were isolated and cultured from CCR5 knockout mice. Our results demonstrated that the GLUT4 membrane translocation efficiency was reduced in CCR5 deficient hypothalamic neurons after insulin stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.