Abstract

This paper addresses the problem of simultaneously migrating a group of co-located and virtual machines (VMs), i.e, VMs executing on the same physical machine. We refer to such a mass simultaneous migration of active VMs as live gang migration. Cluster administrators may often need to perform gang migration for load balancing, system maintenance, or power savings. Application performance requirements may dictate that the total migration time, network traffic overhead, and service downtime, be kept minimal when migrating multiple VMs. State-of-the-art migration techniques optimize the migration of a single VM. In this paper, we optimize the simultaneous migration of multiple co-located VMs. We present the design, implementation, and evaluation of a de-duplication based approach to perform concurrent migration of co-located VMs. Our approach transmits memory content that is identical across VMs only once during migration to significantly reduce both the total migration time and network traffic. Using the QEMU/KVM platform, we detail a proof-of-concept prototype implementation of two types of de-duplication strategies (at page level and sub-page level) and a differential compression approach to exploit content similarity across VMs. Evaluations over Gigabit Ethernet with various types of VM workloads demonstrate that our prototype for gang migration can achieve significant reductions in both network traffic and total migration time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.