Abstract

Simple SummaryThe invasive insect pest, Drosophila suzukii Matsumura or spotted-wing drosophila (SWD) lays its eggs in soft and stone fruit. Eggs hatch into larvae, which feed on fruit, causing fruit collapse and significant economic losses worldwide. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions. In nature, D. suzukii interacts with and encounters other Drosophila species, especially towards the end of the growing season when ripening fruits are scarce. We showed previously that D. suzukii were deterred from laying eggs on artificial media exposed to egg laying Drosophila melanogaster, its sister species. It was hypothesized that a signal was left by D. melanogaster which deterred D. suzukii from laying eggs. This study aimed to identify from which D. melanogaster life stage the egg laying deterrent signal originated and we showed that the presence of live D. melanogaster larvae on the egg laying media deter D. suzukii from laying eggs. Drosophila melanogaster cuticular hydrocarbons were examined as the signal source, but no evidence was found for their involvement. These results have improved our understanding of the interspecific interactions between D. suzukii and other Drosophila species and could provide new innovative approaches to D. suzukii management strategies.The worldwide invasive insect pest, Drosophila suzukii Matsumura (spotted-wing Drosophila), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing. We showed before that D. suzukii were deterred from laying eggs on artificial media previously visited by its sister species—Drosophila melanogaster. In the current study, laboratory choice test experiments were conducted to identify which D. melanogaster life stage (eggs, larvae, or adult) deterred D. suzukii oviposition. We demonstrated that the presence of live D. melanogaster larvae on the egg-laying media consistently deterred D. suzukii oviposition. Drosophila melanogaster cuticular hydrocarbons (CHCs) were examined as candidate for the oviposition deterrent. CHCs of larval and adult D. melanogaster and D. suzukii were analyzed. In both species, the composition of the CHCs of larvae was similar to that of adults, although quantities present were much lower. Furthermore, the CHC profiles of the two species were markedly different. However, when assayed as deterrents in the laboratory choice test experiment, CHC extracts from D. melanogaster did not deter oviposition by D. suzukii.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call