Abstract

The ability to visualize the distributions of specific proteins with a light microscope and fluorescent probes is largely responsible for our current understanding of cellular structure. A major limitation of this approach arises from the blurring effects of diffraction, which decreases resolution and limits the ability to obtain information at the nanoscale. There has been a tremendous drive to develop optical and computational methods that improve the resolution of the light microscope, and structured illumination microscopy (SIM) is one solution. This method uses patterned illumination to double both lateral and axial resolution. Nikon's N-SIM is a commercial system that integrates the most desirable features of light microscopy, specific labeling of molecules, and live cell imaging, with structured illumination. This provides the ability to achieve super resolution suitable for a range of biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.