Abstract

Many phylum Bacteroidetes bacteria are motile without either flagella or pili. These cells move on surfaces such as glass or agar, and a motor generates a propulsion force for the cells via a proton motive force across the cytoplasmic membrane. The gliding motility depends on the helical track of cell adhesin along the longer axis of the cell body. Here, we describe live-cell imaging of gliding motility under optical microscopy, as well as an immunofluorescent labeling method for visualizing helical trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.