Abstract

Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.

Highlights

  • Diverse and complex butterfly wing color patterns are constructed by regular arrays of microscopic scales that cover the surface of butterfly wings

  • We examined triple staining patterns of the larval wing imaginal disks (n = 4; n designates the number of individuals observed hereafter) (Fig 2) and the pupal wing tissues (n = 4) (Fig 3) using Hoechst 33342 for nuclei, BODIPY FL thapsigargin for endoplasmic reticulum (ER), and MitoTracker Orange for mitochondria

  • We obtained in vivo images of larval and pupal cells of butterfly wing tissues, demonstrating the power of fluorescent confocal microscopy in studying living epithelial cells

Read more

Summary

Introduction

Diverse and complex butterfly wing color patterns are constructed by regular arrays of microscopic scales that cover the surface of butterfly wings. Scales are extracellular structures produced by epithelial scale cells during the pupal stage [1,2,3]. Pupal wing tissues are a sac-like structure that consists of the dorsal and ventral epithelial cell sheets, and in between, there is a hemolymph space where hemocytes can move vigorously at the early pupal stage [4]. PLOS ONE | DOI:10.1371/journal.pone.0128332 June 24, 2015

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call