Abstract

No vaccine exists against visceral leishmaniasis. To develop effective vaccines, we have previously reported protective role of live attenuated centrin gene-deleted Leishmania donovani (LdCen-/- ) parasites through induction of Th1 type immune response in mice, hamsters, and dogs. In this study, we specifically explored the role of Th17 cells in LdCen-/- -induced host protection in mice. Our results showed that compared with wild-type L. donovani infection, LdCen-/- parasites induce significantly higher expression of Th17 differentiation cytokines in splenic dendritic cells. There was also induction of IL-17 and its promoting cytokines in total splenocytes and in both CD4 and CD8 T cells following immunization with LdCen-/- Upon challenge with wild-type parasites, IL-17 and its differentiating cytokines were significantly higher in LdCen-/- -immunized mice compared with nonimmunized mice that resulted in parasite control. Alongside IL-17 induction, we observed induction of IFN-γ-producing Th1 cells as reported earlier. However, Th17 cells are generated before Th1 cells. Neutralization of either IL-17 or IFN-γ abrogated LdCen-/- -induced host protection further confirming the essential role of Th17 along with Th1 cytokines in host protection. Treatment with recombinant IL-23, which is required for stabilization and maintenance of IL-17, heightened Th17, and Tc17 responses in immunized mice splenocytes. In contrast, Th17 response was absent in immunized IL-23R-/- mice that failed to induce protection upon virulent Leishmania challenge suggesting that IL-23 plays an essential role in IL-17-mediated protection by LdCen-/- parasites. This study unveiled the role of IL-23-dependent IL-17 induction in LdCen-/- parasite-induced immunity and subsequent protection against visceral leishmaniasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.