Abstract

Vortex dynamics, with the possibility of efficient flow control, is explored in this study based on the new introduced vortex definition and identification system of Liutex. With the six core elements of vortex identification, including (1) absolute strength, (2) relative strength, (3) local rotational axis, (4) global rotational axis, (5) vortex core size and (6) vortex boundary, provided by the Liutex system, it is possible to numerically devise strategies, primarily by introducing additional source terms in Navier-Stokes equations, which we call Liutex force field model here, to control the vortex regions. Two methodologies of centripetal force model and counter-rotation force model are preliminarily investigated in a cavitating flow around two-dimensional Clark-Y hydrofoil. It is found that Liutex based models are capable of illustrating the vortex dynamics and possibly strengthening or weakening the vortices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.