Abstract

This paper describes the ASR system proposed by the SODA consortium to participate in the ASR task of the French REPERE evaluation campaign. The official test REPERE corpus is composed of TV shows. The entire ASR system was produced by combining two ASR systems built by two members of the consortium. Each ASR system has some specificities: one uses an i-vector-based speaker adaptation of deep neural networks for acoustic modeling, while the other one rescores word-lattices with continuous space language models. The entire ASR system won the REPERE evaluation campaign on the ASR task. On the REPERE test corpus, this composite ASR system reaches a word error rate of 13.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.