Abstract

Littoral benthic macroinvertebrates were studied in three alpine lakes in the High Tatra Mountains (Slovakia) located at different elevations: 2157, 1940 (alpine zone) and 1725 m (sub-alpine zone). The study sites were selected in order to obtain a gradient in thermal regimes and particular organic matter (POM). Differences in the faunal composition of lakes were tested for the ability of these differences to indicate climatic changes, and species/taxa were identified that could be used for the purposes of monitoring and climate change assessment. Macroinvertebrates were sampled quantitatively during the ice-free seasons of 2000 and 2001, and lake surface water temperature (LSWT) and POM were measured. LSWT and POM were negatively correlated with elevation, whereas ice cover was positively correlated with elevation. A total of 60 oligostenothermic macroinvertebrate species/taxa were collected belonging to ten higher taxonomic groups. Statistical analysis showed trends in several biotic metrics with altitude. More specifically, there was a clear increase in the number of species/taxa, genera, and higher taxonomic groups, as well as an increase in the Shannon–Wiener diversity with decreasing altitude. On the contrary, evenness and density of benthic macroinvertebrates did not show any clear relationship with altitude. Gatherers of detrital particles dominated the assemblages’ trophic structures, but no distinct changes in the proportion of functional feeding groups along the altitudinal gradient were found. While the non-insect fauna of the lakes was rather uniform across the elevational gradient, the insect fauna composition was highly correlated with altitude, as confirmed by Detrended Correspondence Analysis. Aquatic insects, in particular chironomids and caddisflies, can therefore be used as good indicators of temperature changes. Our results suggest that under warmer conditions, non-insect benthic macroinvertebrates will remain more or less stable, while aquatic insects will undergo an increase in the number of thermophilic species typical for lower altitudes. These colonizers will increase the diversity of alpine lakes, while the extinction of cold stenothermal species will lead to impoverishment of the native fauna. An indirect impact on benthic macroinvertebrates through changes in food sources is likely, and changes in trophic structure of the littoral assemblages can be expected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call