Abstract

The morphology of plant nuclei varies among different species, organs, tissues and cell types. However, mechanisms and factors involved in the maintenance of nuclear morphology are poorly understood. Because nuclei retain their shapes even after cytoskeletal inhibitor treatments both in vivo and in vitro, we assumed involvement of the nuclear lamina, which plays a critical role in the regulation of nuclear morphology in animals. The crude nuclear lamina fraction isolated from Arabidopsis thaliana leaves was analyzed by mass spectrometry, and putative nuclear lamina proteins were identified. Among their T-DNA insertion lines, nuclei of little nuclei1 (linc1) and linc4 disruptants were more spherical than those of wild-type plants. Because A. thaliana harbors four LINC genes, we prepared all single and linc1/4 and linc2/3 double disruptants. In leaf epidermal cells, the circularity index of the nucleus in all linc disruptants except linc3 was significantly higher than that in the wild-type plants. The extent of the effects of LINC1 and/or LINC4 disruption was significantly higher than that of the effects of LINC2 disruption. The nuclear area was significantly smaller in the linc1, linc4 and linc1/4 disruptants than in the wild-type plants. Regardless of the defects in nuclear morphology, all linc disruptants exhibited a normal ploidy level. In interphase cells, LINC1 and LINC4 were mainly localized to the nuclear periphery, whereas LINC2 was in the nucleoplasm and LINC3 was detected in both regions. From prometaphase to anaphase in mitotic root tip cells, LINC1 was co-localized with chromosomes, whereas other LINCs were dispersed in the cytoplasm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.