Abstract
A field study was conducted in the moist deciduous forests of the Western Ghats (India) to test the following three hypotheses: (1) Litter production in tropical forests is a function of the floristic composition, density, basal area and disturbance intensity; (2) Decay rate constants of tropical species is an inverse function of the initial lignin/nitrogen ratio; (3) Decomposition rates in tropical forests are faster than temperate forests. Litter fall was estimated by installing 63 litter traps in the moist deciduous forests of Thrissur Forest Division in the Western Ghats at three sites. Litter fall followed a monomodal distribution pattern with a distinct peak during the dry period from November–December to March–April. Dillenia pentagyna, Grewia tiliaefolia, Macrosolen spp., Xylia xylocarpa, Terminalia spp., Lagerstroemia lanceolata, Cleistanthus collinus, Bridelia retusa, and Helicteres isora were the principal litter producing species at these sites. The annual litter fall ranged from 12.18 to 14.43 t ha −1. Structural attributes of vegetation such as floristic composition, basal area, density and disturbance intensity did not directly influence litter fall rates. Leaf litter decay rates for six dominant tree species were assessed following the standard litter bag technique. One hundred and eight litter bags per species containing 20 g samples were installed in the forest floor litter layer at the same three sites selected for the litter fall quantification exercise. The residual litter mass decreased linearly with time for all species. In general, less disturbed sites and species adapted to higher nitrogen availabilities exhibited relatively higher decay rate coefficients ( k). The rapid organic matter turnover observed in comparison with published temperate forest litter decay rates confirms that tropical moist deciduous forest species are characterised by faster decomposition rates. Mean concentrations of N, P and K in the litter were profoundly variable amongst the dominant species. Initial nitrogen content of the leaf litter varied from 0.65 to 1.6%, phosphorus from 0.034 to 0.077% and potassium from 0.25 to 0.62%. C. collinus, an understorey shrub consistently recorded the lowest litter concentrations for all nutrients. The overriding pattern is one of higher nutrient levels in the overstorey leaf litter and lower concentrations in the understorey litter. Furthermore, as decomposition proceeded, the nitrogen concentration of the residual biomass increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.