Abstract
A field study was conducted in a nutrient-impacted marsh in Water Conservation Area 2A (WCA-2A) of the Everglades in southern Florida, USA, to evaluate early stages of plant litter (detritus) decomposition along a well-documented trophic gradient, and to determine the relative importance of environmental factors and substrate composition in governing decomposition rate. Vertically stratified decomposition chambers containing native plant litter (cattail and sawgrass leaves) were placed in the soil and water column along a 10-km transect coinciding with a gradient of soil phosphorus (P) enrichment. Decomposition rate varied significantly along the vertical water–soil profile, with rates typically higher in the water column and litter layer than below the soil surface, presumably in response to vertical gradients of such environmental factors as O2 and nutrient availability. An overall decrease in decomposition rate occurred along the soil P gradient (from high- to low-impact). First-order rate constant (k) values for decomposition ranged from 1.0 to 9.2 × 10−3 day−1 (mean = 2.8 ×10−3 day−1) for cattails, and from 6.7 × 10−4 to 3.0 × 10−3 day−1 (mean = 1.7 × 10−3 day−1) for sawgrass. Substantial N and P immobilization occurred within the litter layer, being most pronounced at nutrient-impacted sites. Nutrient content of the decomposing plant tissue was more strongly correlated to decomposition rate than was the nutrient content of the surrounding soil and water. Our experimental results suggest that, although decomposition rate was significantly affected by initial substrate composition, the external supply or availability of nutrients probably played a greater role in controlling decomposition rate. It was also evident that nutrient availability for litter decomposition was not accurately reflected by ambient nutrient concentration, e.g., water and soil porewater nutrient concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.