Abstract

AbstractSeaward dipping reflectors (SDRs) are large piles of seaward thickening volcanic wedges imaged seismically along most rifted continental margins. Despite their global ubiquity, it is still debated whether the primary cause of SDR formation is tectonic faulting or magmatic loading. To study how SDRs might form, we developed the first two‐dimensional thermomechanical model that can account for both tectonics and magmatism development of SDRs during rifting. We focus here on the magmatic loading mechanism and show that the shape of SDRs may provide unprecedented constraints on lithospheric strength at volcanic rifting margins. For mapping SDRs geometries to lithospheric strength, a sequence of model lithospheric rheologies are treated, ranging from analytic thin elastic plates to numerical thick elasto‐visco‐plastic crust and mantle layers with temperature and stress‐dependent viscosity. We then analyzed multichannel seismic depth‐converted images of SDRs from Vøring and Argentinian rifted margins in terms of geometric parameters that can be compared to our model results. This results in estimates for the lithospheric thickness during rifting at the two margins of 3.4 and 5.7 km. The plate thickness correlates inversely with mantle potential temperature at these margins during rifting, as estimated by independent studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.