Abstract

SUMMARY The Bhuj area, in the Kutch region of western India, is a unique intraplate seismic zone in the world where aftershock activity associated with a large magnitude earthquake (7.7 Mw Bhuj earthquake on 26 January 2001) has persisted over a decade and up till today. We studied the lithospheric resistivity structure of the Bhuj earthquake aftershock zone to gain more insight into the structure and processes influencing the generation of intraplate seismicity in broad and, in particular, to detect the deep origin and upward migration channels of fluids linked to the crustal seismicity in the area. A lithospheric resistivity model deduced from 2-D and 3-D inversions of long-period magnetotelluric (MT) data shows low resistive lithospheric mantle, which can be best explained by a combination of a small amount of interconnected melts and aqueous fluid in the upper mantle. The MT model also shows a subvertical modestly conductive channel, spatially coinciding with the Kutch Mainland Fault, which we interpret to transport fluids from the deep lithosphere to shallow crust. We infer that pore pressure buildup aids to achieve the critical stress conditions for rock failure in the weak zones, which are pre-stressed by the compressive stress regime generated by ongoing India–Eurasia collision. The fluidized zone in the upper mantle beneath the area perhaps provides continuous fluid supply, which is required to maintain the critical stress conditions within the seismogenic crust for continued seismicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.