Abstract

Quaternary lavas erupted in zones of tectonomagmatic extension within the Main Ethiopian Rift (MER) preserve details of lithospheric structure in the East African Rift System. Despite observed source heterogeneity, basalts, trachybasalts, and basaltic trachyandesites erupted in the Wonjii Fault Belt (WFB) and the Silti‐Debre Zeyit Fault Zone (SDFZ) form coherent fractionation paths dominated by variable removal of observed phenocryst phases. Crustal assimilation is not widespread, though it is observed at the southern end of the WFB where both fault belts merge; farther north, assimilation of cumulate phases related to fractional crystallization of previous magmas is identified. Shallow fractionation conditions (∼1 kbar) within the WFB do not change from north to south. In contrast, lavas erupted within the contemporaneous SDFZ fractionate at various crustal depths. These results indicate a better developed magmatic system beneath the WFB where magmas rose quickly before undergoing more significant fractionation at near surface levels and a less developed system beneath the SDFZ. The distribution of magmatism and extant geophysical data indicate thinned crust and a single rift‐centered zone of magmatic activity northeast of 8°30′N, consistent with a transitional lithosphere between continental and oceanic settings. Southwest of 8°30′N, thicker crust and rift‐marginal axes of extension suggest lithosphere with continental affinities. The WFB is propagating southward in response to extension within the Red Sea Rift; the northward propagating SDFZ is related to rifting within the East African Rift System. This region records the unification of two rift systems, requiring care in interpreting the MER as simply transitional between continental and oceanic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call