Abstract

Most of the studies on the large igneous provinces (LIPs) focus on Phanerozoic times, and in particular, those related to the disruption of Pangea (e.g. CAMP, Karoo, Parana–Etendeka) while Precambrian LIPs (e.g. Ventersdorpf, Fortescue) remain less studied. Although the investigation of Precambrian LIPs is difficult because they are relatively poorly preserved, assessment of their geochemical characteristics in parallel with younger overlapping LIP is fundamental for monitoring the evolution of the mantle composition through time. Recent 40Ar/ 39Ar dating of the Okavango giant dyke swarm (and related sills) in southern Africa showed that ~ 90% of the dykes were emplaced at 179 ± 1 Ma and belong to the Karoo large igneous province whereas ~ 10% of dykes yielded Proterozoic ages (~ 1–1.1 Ga). Here, we provide new major, trace and rare earth elements analyses of the low-Ti Proterozoic Okavango dyke swarm (PODS) that suggest, combined with age data, a cognate origin with the 1.1 Ga Umkondo large igneous province (UIP), southern Africa. The geochemical characteristics of the PODS and UIP basalts are comparable to those of overlapping low-Ti Karoo basalts, and suggest that both LIPs were derived from similar enriched mantle sources. A mantle plume origin for these LIPs is not easily reconciled with the geochemical dataset and the coincidence of two compositionally similar mantle plumes acting 900 Myr apart is unlikely. Instead, we propose that the Umkondo and Karoo large igneous provinces monitored the slight evolution of a shallow enriched lithospheric mantle from Proterozoic to Jurassic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call