Abstract

AbstractThe origin of EM1 (Enriched Mantle 1) reservoir, initially defined by the ocean island basalts (OIBs) with extremely low 143Nd/144Nd and 206Pb/204Pb, has been long debated, because melting of the ambient refractory peridotite along with the EM1 component will dilute the “EM1 fingerprints” recorded in these rocks. Comparing to the OIBs, Cenozoic potassic basalts from northeast China, the typical EM1‐type basalts in continental region, are formed at a lower‐degree melting, and therefore have the chance to preserve more information of the EM1 component. Here high‐precision Fe isotopes of these potassic basalts are reported to constrain the source lithology. Their δ57Fe (0.15–0.28‰) are positively correlated with the K2O, SiO2, K/U, and Rb/Y, and negatively correlated with the εNd and δ26Mg, forming binary mixing arrays. One endmember is the inferred EM1 reservoir, whereas the other is the local lithospheric mantle. Major elemental compositions of the melts released from the EM1 component resemble those sediment‐derived experimental melts. Combining with their heavier Fe isotopes and higher Zn/Fe ratios relative to those mid‐ocean ridge basalts (MORBs), an eclogitic source of these potassic basalts is therefore proposed to account for these features. Differing from the most conventional thinking of the metasomatized, phlogopite‐bearing lithospheric mantle, we argue that the EM1 component in the source of continental potassic basalts are composed of ancient subducted crustal materials (i.e., recycled sediment ± oceanic crust). This deep EM1 component will transform into eclogite and release high‐SiO2 potassic melts when ascending to the shallow asthenosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.