Abstract
The extraction of palaeoenvironmental (palaeoclimatic) signals from the chemical composition of siliciclastic sediments is valuable for the reconstruction of past environments, particularly in continental basins. Here we test novel weathering proxies, which are less sensitive to lithological control than the previously used raw element ratios K/Al, K/Ti, and K/Rb: (1) local enrichment factors of K/Al, Mg/Al, and K/Rb, i.e., the element ratios corrected for grain size- and matrix composition using local background functions (Al/Si, Fe, and Ca as explanatory variables) and ordinary regression and (2) robust regression residuals of those element ratios based on isometric log-ratio coordinates of the most relevant “lithogenic” elements (Ca, Fe, Rb, Si, Zr) in the chemical composition. Chemical weathering proxies can be obtained from departures of chemical composition of sedimentary profiles from relationships with other chemical elements, in particular those with grain-size control. The resulting weathering proxies were examined for the Miocene deposits from the Most Basin, the Czech Republic, which recorded one of the major warm episodes of the Cenozoic time – the Miocene Climatic Optimum. The performance of weathering proxies has been checked by (1) comparison of individual proposed proxies in one drill core HK930, (2) detailed analysis of orbital signals in the relevant compositional functions in HK930; and (3) lateral correlation of three cores HK930, DU7, and DO565 of the same basin. The novel proxies show lateral stability and orbital signatures of short eccentricity, obliquity, and precession, confirming their usefulness in palaeoenvironmental studies. Corrections for grain-size and carbonate contents should help to isolate climatic content from the weathering proxies, although in the studied sediments it weakened the precession component in the orbital signal, as grain-size proxies and other compositional data also carried orbital signals. We propose to consider these proxy ideas in palaeoclimatic reconstructions based on chemical weathering proxies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.