Abstract

Mixed depositional reservoirs are widely distributed in Junggar Basin, NW China. These reservoirs are featured by complex lithology, ultra-low permeability and extremely heterogeneous pore structures that markedly impact field development efficiency. This study illustrated the distribution of lithological combinations within a single sand bar in the Middle Permian Lucaogou Formation, Jimsar Sag, Junggar Basin and revealed the diagenetic control on the reservoir quality of a single sand bar based on thin sections, scanning electron microscopy (SEM), helium porosity and air permeability measurement, pressure-controlled mercury injection (PMI), rate-controlled mercury injection (RMI), X-ray computed tomography (CT), and collected and published data. The results show that the heterogeneity of microscopic pore structures within a single sandbar is controlled by the distribution of various lithological combinations and different levels of diagenetic alteration. The results show that there are mainly three types of lithology developed in a single sand bar. The reservoir quality of dolomitic siltstone reservoirs is the best, followed by silty dolomite reservoirs. The reservoirs quality of dolomicrite reservoirs is the worst. Three main lithological combinations can be identified within a single sand bar. Controlled by climate, lake level fluctuation and provenance, lithological combination A, characterized by blended mixing of dolomitic siltstone, silty dolomite and dolomicrite, is mainly developed in the middle of single sand bar. Lithological combination B, characterized by saltatory mixing of interbedded dolomitic siltstone and dolomicrite, and lithological combination A developed on the side of the sand bar near the shallow lake, while lithological combination C with blended mixing of interbedded dolomitic siltstone and silty dolomite developed on the side near provenance. Strong compaction is the main factor of the decrease of reservoir quality of sand bar reservoirs. Carbonate cementation promotes the densification of reservoirs. The irregular flaky clay minerals lead to the exponential decline of permeability, and dissolution is the main kind of diagenesis to improve reservoir quality. The dolomitic siltstone reservoirs in the middle of a single sand bar have the best reservoir quality because the overlying dolomicrite layers resist compaction, resulted in a certain amount of primary pores remained. Besides, the dolomitic siltstone reservoirs are far from the sand-mudstone interfaces, which leads to the low carbonate cement content. Furthermore, abundant dissolution pores in dolomitic siltstone reservoirs improve the reservoir quality. These research results are crucial to reservoir evaluation and development in similar mixed depositional tight reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call