Abstract

Black phosphorus (BP) has distinctive properties of tunable direct band gap as a semiconductor material, and both high carrier mobility and on/off switching performance for electronic devices, but has a significant drawback of material degradation in ambient atmosphere. Also, unlike graphene or MoS2, BP is only synthesized in bulk shapes limiting the fabrication of thin film-based devices. We demonstrated a contact printing process for BP field effect transistors (FET) with the steps of mechanical exfoliation of BP flakes and their randomized stamping in dry-transfer regime. The contact printing featured by fast, continuous and solvent-free process on the pre-patterned electrodes guarantees high process efficiency providing immunity against the chemical degradation of BP layers. With asymmetric I-V characteristics, the resultant BP-channelized FET shows the electrical properties of on/off current ratio, hole mobility, and subthreshold swing as > 102, ~ 130 cm2/Vs, and ~ 4.6 V/dec, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.