Abstract

The Halo copper-molybdenum prospect is a porphyry system in Ratanakiri province, northeastern part of Cambodia. There is only one research was carried out on this prospect about geological mapping and short wave infrared (SWIR) spectroscopy on alteration mineral identification. The purpose of this research is to confirm the deposit type from previous Angkor Gold’s report and find the centre of porphyry deposit based on characteristic of intrusive rocks at surface and subsurface, characteristics of the intrusive rocks and alteration lithogeochemistry of intrusive and volcanic rocks by using Pearce Element Ratio (PER) analysis. PER analysis was used to examine the nature and extend of the alteration halos in the porphyry Halo copper-molybdenum prospect. The intrusive rocks and volcanic rocks in Halo, range from diorite to granite (quartz feldspar porphyry) in composition as well as dacite to trachyandesite (andesite porphyry) in composition, respectively. They were formed in a subduction-related tectonic setting, likely a volcanic arc. Trace elements spider diagrams were normalized to primitive mantle display strong enrichment in large-ion lithophile elements such as Rb, Ba and K and depletion in some high-field strength elements such as Nb and Ti, suggesting magmas generated in a subduction-related tectonic setting. PER analysis indicates a moderate to high degree of sericite alteration of dacites, quartz feldspar porphyries, andesite porphyries and granodiorite porphyries. Moreover, three alterations in the Halo prospect such as potassic (secondary K-feldspar and biotite), phyllic (sericite) and propylitic (epidote) alteration were identified, which are consistent with petrography analysis. The potassic alteration zone is vectoring center of the hydrothermal system which may represent the locus of mineralization. Therefore the geochemical signature of potassic alteration within the quartz feldspar porphyry, andesite porphyry and granodiorite porphyry with high grad of copper ranges up to 2670 ppm and molybdenum ranges up to 5297 ppm represents a character for further exploration in the Halo porphyry copper-molybdenum prospect.

Highlights

  • The Halo porphyry copper-molybdenum prospect is a porphyry system in Ratanakiri province, northeastern part of Cambodia

  • Detailed geochemical characteristics of rocks and alteration lithogeochemistry were not studied yet. This is the first study that focuses on the characteristics of the intrusive rocks to constrain petrogenesis and tectonic setting, and lithogeochemistry of intrusive and volcanic rocks to demonstrate elements transportation during hydrothermal alteration at the Halo prospect

  • 1) The Halo porphyry copper molybdenum prospect is hosted in diorite, granodiorite, quartz feldspar porphyry, granodiorite porphyry, andesite porphyry, mafic dykes, aplite dykes, and felsic dykes

Read more

Summary

Introduction

The Halo porphyry copper-molybdenum prospect is a porphyry system in Ratanakiri province, northeastern part of Cambodia. The Halo porphyry copper-molybdenum prospect lies 2 km southeast of a strike slip fault trending NE-SW, known as the PhumSyarung-Dok Yong Fault corridor. The Halo prospect is hosted by intermediate to felsic intrusive and volcanic rocks. Detailed geochemical characteristics of rocks and alteration lithogeochemistry were not studied yet This is the first study that focuses on the characteristics of the intrusive rocks (major elements, trace elements, and rare earth elements) to constrain petrogenesis and tectonic setting, and lithogeochemistry of intrusive and volcanic rocks to demonstrate elements transportation during hydrothermal alteration at the Halo prospect. The main purpose of this study is to confirm the deposit type based on the datafrom by present study and to find the centre of porphyry deposit in the Halo prospect

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call