Abstract

Atomic layer deposition (ALD), as a thin film deposition technique, has been explored as a viable path to improve the performance of lithium-ion batteries. However, a trade-off between the species transport (capacity) and protection (lifetime), resulting from the insulating properties of ALD films, is the key challenge in ALD technology. Here we report a breakthrough to overcome this trade-off by coating an ultra-thin conformal conductive film by ALD on the surfaces of LiMn2O4 particles. The particles coated with optimized film thickness exhibit a significant improvement in capacity and cycling performance compared to uncoated and insulating ALD film (e.g., Al2O3 and ZrO2) coated samples both at room temperature and 55 °C for long cycling numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.