Abstract
Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in battery management system (BMS) used in electric vehicles. A novel approach which combines empirical mode decomposition (EMD) and autoregressive integrated moving average (ARIMA) model is proposed for RUL prognostic in this paper. At first, EMD is utilized to decouple global deterioration trend and capacity regeneration from state-of-health (SOH) time series, which are then used in ARIMA model to predict the global deterioration trend and capacity regeneration, respectively. Next, all the separate prediction results are added up to obtain a comprehensive SOH prediction from which the RUL is acquired. The proposed method is validated through lithium-ion batteries aging test data. By comparison with relevance vector machine, monotonic echo sate networks and ARIMA methods, EMD-ARIMA approach gives a more satisfying and accurate prediction result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.