Abstract
7Li NMR measurements were employed to monitor the stoichiometry andstability of Li+ ion complexes with 12-crown-4 (12C4), 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) l8-crown-6 (18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-18-crown-6 (DB18C6) in binary acetone-nitrobenzene mixtures of varying composition. In all cases studied, the variation of 7Li chemical shift with the crown/Li+ mole ratio indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation that relates the observed chemical shifts to the formation constant. In all solvent mixtures used, the stabilities of the resulting 1:1 complexes varied in the order15C5 > B15C5 > DC18C6 > 18C6 > 12C4 >DB18C6. It was found that,in the case of all complexes, an increase in the percentage of acetone in thesolvent mixtures significantly decreased the stability of the complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Inclusion Phenomena and Macrocyclic Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.