Abstract

Two new lithium vanadyl oxalatophosphites have been synthesized by hydrothermal treatment. The respective formula are Li2(VOHPO3)2C2O4 6H2O (1) and Li2(VOHPO3)2C2O4 4H2O (2). The structures of the compounds have been determined by single crystal X-ray diffraction. Compound 1 crystallizes in triclinic symmetry in space group P-1, a=6.3592(2)Å, b=8.0789(3)Å, c=9.1692(3)Å, α=64.390(2), β=87.277(2)°, γ=67.624(2) and, compound 2 in monoclinic symmetry, space group P21/a, a=6.3555(2)Å b=12.6368(7)Å c=9.0242(4)Å β=105.167(3)°. The vanadium phosphite framework consists of infinite chains of corner-sharing vanadium octahedra and hydrogenophosphite tetrahedra. The oxalate groups ensure the connection between the chains. The lithium ions and the water molecules are located between the anionic [(VO)2(HPO3)2C2O4]2− layers. Thermal behavior of both compounds was carefully studied by combining thermogravimetric analyses and thermal dependant X-ray diffraction in order to study the thermal stability of the layered oxalatophosphites and to see the influence of the decomposition of the carbon-based anions into the final lithium vanadyl phosphate. Various intermediate phases were evidenced and for both compounds the final product was LiVOPO4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.