Abstract

Ni-rich layered cathodes have been used in commercial Li-ion batteries because of their high capacity and low cost. However, they suffer from crack formation at the grain boundaries owing to heterogeneous large volume changes during the reactions. To improve their performance, a comprehensive understanding of the grain architecture, Li transport pathways, and phase transitions is essential. Here, we show the correlations between these factors using in situ transmission electron microscopy. The results show that Li ions are extracted through tortuous paths connecting the Li-containing a-b planes in the crystals. Moreover, the grain boundary resistance depends not only on the misorientations of the neighboring grains. Even twins with misorientation angles of 70° are not decisive factors in Li movement. We also show the existence of two-phase separation in single crystals between two hexagonal phases during fast charging. These results provide valuable information for determining the optimal grain architecture and for material design, helping enhance high capacity and high stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.