Abstract

In this paper we investigate lithium mobility in both Li2FeSiO4 and its half-lithiated state LiFeSiO4 considering an orthorhombic crystal structure. We find that the calculated activation energy of Li+ ions hopping between adjacent equilibrium sites predicts two least hindered diffusion pathways in both materials. One of them is along the [100] direction characterizing an ionic diffusion in a straight line and the other follows a zig-zag way between the Fe–Si–O layers. We also show that diffusion of Li+ ions in the half-lithiated structure follows the same behavior as in the lithiated structure. As a whole, the activation energies for the investigated compounds present a greater value compared with the activation energies in currently used materials such as LiFePO4. The results were calculated in the framework of density functional theory in conjunction with the climbing image nudged elastic band method. The Hubbard term was added to the Kohn–Sham Hamiltonian to overcome the delocalization problem of d electrons. Furthermore, the diffusion coefficients were calculated for both structures considering temperatures ranging from 300 to 700K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.