Abstract
Huntington’s disease is a progressive, inherited neurodegenerative disorder characterized by the loss of subsets of neurons primarily in the striatum. In this study, we assessed the neuroprotective effect of lithium against striatal lesion formation in a rat model of Huntington’s disease in which quinolinic acid was unilaterally infused into the striatum. For this purpose, we used a dopamine receptor autoradiography and glutamic acid decarboxylase mRNA in situ hybridization analysis, methods previously shown to be adequate for quantitative analysis of the excitotoxin-induced striatal lesion size. Here we demonstrated that subcutaneous injections of LiCl for 16 days prior to quinolinic acid infusion considerably reduced the size of quinolinic acid-induced striatal lesion. Furthermore, these lithium pre-treatments also decreased the number of striatal neurons labeled with the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay. Immunohistochemistry and western blotting demonstrated that lithium-elicited neuroprotection was associated with an increase in Bcl-2 protein levels. Our results raise the possibility that lithium may be considered as a neuroprotective agent in treatment of neurodegenerative diseases such as Huntington’s disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.