Abstract

Graphdiyne (GD) is a new carbon allotrope, consisting of an sp- and sp2-hybridized carbon network. In this work, density functional theory calculations are carried out to investigate the adsorption and diffusion of lithium (Li) atoms on GD monolayers, and the results are compared with those for graphyne and graphene monolayers. High-capacity Li storage, as LiC3, has been predicted, and the preferred adsorption sites for Li have been identified computationally. Moreover, it is found that Li can easily diffuse on the GD monolayer with moderate barriers of 0.18 to 0.84 eV. The predicted high capacity and mobility indicate that GD may offer excellent performance as the anode of lithium batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.