Abstract

The work described herein deals with efforts to make a persuasive correlation between structural characteristics and electrochemical lithium storage for a silicon oxycarbide prepared from poly(methylhydrogensiloxane) and divinylbenzene. Structural characterization reveals that the silicon oxycarbide includes excess free carbon in an amorphous network. The reversibility of lithiation and delithiation in the silicon oxycarbide reaches 74% between 0.005 and 3 V relative to lithium at the first cycle but falls to only ca. 30% between 0.4 and 3 V. We found two resonances at 0 and 2.4 ppm in the (7)Li magic angle spinning nuclear magnetic resonance spectrum of the silicon oxycarbide lithiated to 0.4 V, whose contributions are 67 and 33%, respectively, and thus are in good agreement with the reversibility observed between 0.4 and 3 V. The fully lithiated silicon oxycarbide shows a single resonance at ca. 3-9 ppm, which tends to broaden at lower temperatures to -120 °C, whereas the fully delithiated silicon oxycarbide has a single resonance at 0 ppm. These results indicate that both reversible and irreversible lithium species have ionic natures. The Li K edge in electron energy loss spectroscopy does not show clearly any identified near-edge fine structures in the inner part of the silicon oxycarbide after delithiation. Near the surface, on the other hand, LiF and oxygen- and phosphorus-containing compounds were found to be the major constituents of a solid electrolyte interface (SEI) layer. Over repeated lithiation and delithiation, the SEI layer appears to become thick, which should in part trigger capacity fading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.