Abstract

Mesoderm induction and body axis determination in frog (Xenopus) embryos are thought to involve growth factor-mediated cell-cell signaling, but the signal transduction pathways are unknown. Li+, which inhibits the polyphosphoinositide (PI) cycle signal transduction pathway in many cells, also disrupts axis determination and mesoderm induction. Amounts of the PI cycle-derived second messenger, inositol 1,4,5-trisphosphate, increased during mesoderm induction in normal embryos; addition of Li+ inhibited the embryonic inositol monophosphatase and reversed this increase. Embryonic PI cycle activity thus shows characteristics that indicate it may function in mesoderm induction and axis determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.