Abstract

A feasibility study for the recovery of lithium from salt water with the protonated lithium titanium oxide ion-sieves was carried out in this work. Lithium ions (Li+) in LiTi2O4 having a similar ion density with H+ allow repeated exchanges and regeneration with high selectivity. By Li7 magic angle spinning solid-state magnetic resonance, it is apparent that chemical structure of lithium in the ion-sieves is not perturbed during the repeated Li+/H+ exchange processes. As the dissolution of titanium is negligible (<0.1%), the secondary contamination during the capture process can be minimized. The ion-sieves exhibit lithium capture capacities of up to 9.5mg/g during the repeated Li+/H+ exchanges with H0.23Li0.77Ti2O4/LiTi2O4 for 24h, and the captured Li+ may be recovered in the form of Li2CO3. Accordingly, the lithium capture method developed in this work could be integrated with current desalination processes for valuable lithium recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.