Abstract

Lithium is an established mood stabilizer and neuroprotective agent frequently used in the treatment of bipolar disorder and as an adjuvant in drug-resistant unipolar depression. The mechanisms underlying both the therapeutic efficacy of lithium and the exacerbation of symptoms following rapid withdrawal are not understood. From previous studies showing antidepressant and neuroprotective activities of thyrotropin releasing hormone (TRH) and TRH-related neuropeptides we hypothesized that lithium may have substantial effects on the expression and secretion of these peptides and/or their receptors in various rat brain regions involved in the regulation of mood. Chronic lithium effect on TRH receptor binding studies: The effect of 1 and 2 weeks of dietary lithium on [ 3H]3-Me-His-TRH binding to plasma membranes of nucleus accumbens, amygdala and pituitary of young adult male Wistar and the endogenously ‘depressed’ Wistar Kyoto (WKY) rats was measured by the method of Burt and Taylor [Burt, D.R., Taylor, R.L., Endocrinology 106 (1980) 1416–1423]. Acute, chronic and withdrawal effect of lithium on TRH and TRH-like peptide levels in young, adult male Sprague–Dawley rats: Rats were divided into four lithium treatment groups. Control animals received a standard laboratory rodent chow. The acute group received a single i.p. injection of 1.5 milli-equivalents of LiCl 2 h prior to killing. The chronic and withdrawal groups received standard rodent chow containing 1.7 g/kg LiCl for 2 weeks. Withdrawal rats were returned to standard chow 48 h prior to killing while the chronic animals continued on the LiCl diet. TRH, TRH-Gly (pGlu-His-Pro-Gly, a TRH precursor), EEP (pGlu-Glu-Pro-NH 2, a TRH-like peptide with antidepressant activity) and Ps4 (a prepro-TRH-derived TRH-enhancing decapeptide) immunoreactivity (IR) were measured in 13 brain regions. The remaining samples were pooled and fractionated by high-pressure liquid chromatography followed by EEP radioimmunoassay. Chronic lithium treatment increased [ 3H]3Me-TRH binding in the nucleus accumbens and amygdala about two-fold in both Wistar and WKY rats but no change was observed in pituitary binding. The most widespread changes in TRH and TRH-related peptide levels were observed in the withdrawal group compared to the controls. The direction of change for the total IR was consistent for all TRH-IR and TRH-related peptide-IR within a given tissue. For example, withdrawal increased all peptide levels in the pyriform cortex and striatum but decreased these levels in the anterior cingulate and lateral cerebellum. Both acute injection and chronic treatment with LiCl decreased TRH and TRH-related peptide levels in the entorhinal cortex. Acute injection and withdrawal both increased EEP-IR in striatum by more than two-fold. The acute effects are most likely due to changes in the release of these peptides since 2 h is not sufficient time for alterations in peptide biosynthesis. Chronic treatment increased levels of pGlu-Phe-Pro-NH 2 levels in hippocampus, pGlu-Leu-Pro-NH 2, and peak ‘2’ in septum by more than four-fold. The present results are consistent with a component role for TRH and related peptides in the mood-altering effects of lithium administration and withdrawal frequently observed during treatment for depression and bipolar disorder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call