Abstract

The lack of a reliable rechargeable lithium metal (Li-metal) anode is a critical bottleneck for next-generation batteries. The unique mechanical properties of lithium influence the dynamic evolution of Li-metal anodes during cycling. While recent models have aimed at understanding the coupled electrochemical-mechanical behavior of Li-metal anodes, there is a lack of rigorous experimental data on the bulk mechanical properties of Li. This work provides comprehensive mechanical measurements of Li using a combination of digital-image correlation and tensile testing in inert gas environments. The deformation of Li was measured over a wide range of strain rates and temperatures, and it was fitted to a power-law creep model. Strain hardening was only observed at high strain rates and low temperatures, and creep was the dominant deformation mechanism over a wide range of battery-relevant conditions. To contextualize the role of creep on Li-metal anode behavior, examples are discussed for solid-state batteries, “dead” Li, and protective coatings on Li anodes. This work suggests new research directions and can be used to inform future electrochemical-mechanical models of Li-metal anodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call