Abstract

The article discusses the results of research on the efficiency of a battery assembled with lithium-iron-phosphate (LiFeP04) cells when managed by an active Battery Management System (BMS) using the “battery-to-cell” energy transfer. This arrangement was especially developed by the authors and is intended for use in a selected suspended mining vehicle. The main emphasis was placed on variation of the two most important factors limiting in practice the effective use of a selected battery: a battery heating during operation and its voltage (power) fade over time. The advantage of the active BMS developed using the “battery-to-cell” energy transfer was compared both with the active BMS based on the cell-to-battery method and with the passive BMS as well. Particular attention was paid to the performance of the BMS balancing effect during the simulated unequal discharging of randomly selected cells (from 12 % to about 40 % of all cells number in the battery). The results obtained allowed for the formulation of appropriate conclusions and practical recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.