Abstract

Alzheimer's disease (AD) is an incurable disease and the main cause of age-related dementia worldwide, despite decades of research. Treatment of AD with lithium (Li) has showed promising results, but the underlying mechanism is unclear. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. The plaques contain also metal ions of e.g. Cu, Fe, and Zn, and such ions are known to interact with Aβ peptides and modulate their aggregation and toxicity. The interactions between Aβ peptides and Li+ ions have however not been well investigated. Here, we use a range of biophysical techniques to characterize in vitro interactions between Aβ peptides and Li+ ions. We show that Li+ ions display weak and non-specific interactions with Aβ peptides, and have minor effects on Aβ aggregation. These results indicate that possible beneficial effects of Li on AD pathology are not likely caused by direct interactions between Aβ peptides and Li+ ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call