Abstract
Touch panels are deemed as a critical platform for the future of human--computer interaction. Recently, flexible touch panels have attracted much attention due to their superior adhesivity and integratability to the human body. However, hydrogel- or organogel-based devices suffer from instability due to liquid evaporation or low-conductivity substrates. It demands an alternative functional touch panel featuring temperature tolerance, high conductivity, and stretchability. Here, we introduce an eutectogel by immobilizing a novel deep eutectic solvent (DES) within 2-hydroxyethyl acrylate (HEA) covalently cross-linked polymer scaffolds. In this DES (ethylene carbonate(EC)-LiTFSI), the C═O group of EC is unique as an electron donor exhibiting strong coordination interactions with Li+, promoting the dissociation of Li+ from LiTFSI to achieve excellent conductivity. Benefiting from their traits, eutectogel presents high conductivity, transmittance, antifreezing, and mechanical strength. In addition, using the surface-capacitive sensing mechanism, the eutectogel can be designed as a 1D strip and 2D rectangular touch panel which can achieve high-resolution touching tracks, even in a low-temperature environment and pressure-then-recovered state. This eutectogel strategy is envisioned to facilitate the development of next-generation intelligent devices, especially in extreme stretching and low-temperature application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.