Abstract

Lithium (Li), as the lightest metal and the most important powerful material in battery fabrication, is widely used in many fields. The fast detection of Li is necessary for industrial application. The slow-speed detection methods, including atomic absorption spectroscopy and inductively coupled plasma mass spectroscopy with high accuracy and low limit of detection, are hard to utilize in in situ industrial control due to complex prepreparation of samples. Here, through the analysis of the typical spectrum line at Li I 670.79nm, Li ions in water were detected quantitatively in 1min, including sample preparation by laser-induced breakdown spectroscopy (LIBS) with filter paper as the adsorption substrate. The calibration curve by polynomial function fitting is used to predict the Li+ concentration. The limit of detection (LOD) as low as 18.4ppb is obtained, which is much lower than the results ever reported by using filter paper. The related factor R2 reaches 99%, and the prediction error is lower than 2%, proving the fast and online monitor for Li+ by LIBS is feasible. Furthermore, by comparison with the results with filter paper enrichment, the Li+ detection from water directly shows higher LOD to 10.5ppm. Moreover, the plasma images, by gate-controlled intensified charge-coupled device, illustrate a different morphology and evolution between that on water surface and filter paper surface through visual observation. This study provides experimental and theoretical experience in a fast way for the quantitative detection of the lightest metal ion (Li+) in liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.