Abstract

Utilization of wind energy in modern power systems creates many technical and economical challenges that need to be addressed for successful large scale wind energy integration. Variations in wind velocity result in variations of output power produced by wind turbines. Variable power output becomes a challenge as the share of wind energy in power systems increases. Large power variations cause voltage and frequency deviations from nominal values that may lead to activation of protective relay equipment, which may result in disconnection of the wind turbines from the grid. Particularly community wind power systems, where only one or few wind turbines supply loads through a weak grid such as distribution network, are sensitive to supply disturbances. Energy storage integrated with wind turbines can address this challenge. In this paper, Li-ion capacitors are investigated as a potential solution for filtering power variations at the scale of tens of seconds. A novel topology and control technique has been introduced to integrate capacitors and power conversion circuitry. Modeling and scaled-down experimental results are provided to verify the theoretical analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call